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A formulation, previously employed to find exact Navier-Stokes solutions for planar 
disturbances in two- and three-dimensional flows with spatially uniform rates of 
strain, is here adapted to incorporate the contribution of various types of body force. 
In  the absence of body forces, it is known that unbounded flows with constant 
vorticity and elliptical streamlines are unstable to certain planar disturbances, which 
are amplified by a Floquet mechanism. The influence of a Coriolis force upon this 
instability mechanism is here described in detail, as an illustration of the general 
formulation. The results are likely to  be of geophysical interest and may also have 
relevance to the breakdown of closed-eddy structures in turbulence. The final section 
of the paper reviews other systems for which analogous exact solutions may be 
obtained. 

1. Introduction 
Craik & Criminale (1986) described a procedure for finding classes of exact 

solutions of the Navier-Stokes equations. These solutions consist of a ‘basic flow’ 
with spatially uniform rates of strain and a ‘disturbance’ of planar form: the 
disturbance is continuously distorted by the basic flow but nevertheless remains of 
planar form a t  all times. A somewhat similar formulation was given by Lagnado, 
Phan-Thien & Leal (1984) ; but this earlier work was restricted to two-dimensional 
basic flows and the authors were unaware that their linearized approximation is in 
fact an exact solution for single plane-wave modes. An early precursor of both papers 
is work of Kelvin (1887) on the linear stability of unbounded plane Couette flow. 

Bayly (1986) was first to  realize that the class of two-dimensional basic flows with 
closed elliptical streamlines can sustain a Floquet-type instability of certain plane- 
wave modes, owing to their periodic distortion. Bayly’s results, though inviscid, 
admitted straightforward extension to incorporate viscosity, and this was sub- 
sequently done by Landman & Saffman (1987). 

Though body-force terms were retained in the initial formulation of Craik & 
Criminale, none of the above studies derived results that incorporate the influence of 
body forces. However, there are some studies, restricted to disturbed unbounded 
plane Couette flow, that include a gravitational body force associated with density 
stratification (Phillips 1966 ; Hartman 1975 ; Knobloch 1984 ; Criminale & Cordova 
1986), or Coriolis force (Yamagata 1976; Farrell 1982; Boyd 1983; Tung 1983; 
Criminale 1985 ; Shepherd 1985 ; Haynes 1987) or both (Criminale & Pinet-Plasencia 
1985; Knobloch 1985). Furthermore, Craik (1988) has recently extended the Craik & 
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Criminale formulation to viscous magnetohydrodynamics (MHD) and has found 
classes of exact solutions in which MHD forces play a significant role. 

The aims of this paper are twofold. The first is to give a general account of those 
flows influenced by body forces that admit exact solutions similar in kind to those 
enumerated by Craik & Criminale when body forces are absent. The second is to 
describe detailed results that extend Bayly’s inviscid Floquet stability analysis of 
elliptical flows to incorporate a Coriolis force. 

For this latter, the Coriolis effect is found to be marked. The results are of potential 
importance both to an understanding of geophysical phenomena and of closed- 
streamline structures within turbulent flows. It is found that, for all but a narrow 
band of rotation speeds, elliptical-vortex flows are inviscidly unstable to three- 
dimensional plane-wave disturbances. However, for some rotation speeds, the 
instability is much stronger than for others and the weaker instability may often be 
suppressed by viscous dissipation. 

2. General formulation 
To avoid undue repetition, the notation of Craik & Criminale (1986, henceforth 

referred to  as I) is retained and only the key results are given here. The present 
analysis closely follows that of the earlier work, but includes additional body-force 
terms. The governing equations are the incompressible Navier-Stokes equations, 

(2 . la)  

(2.1 b)  

here expressed in Cartesian tensor form with summation over repeated lower indices. 
The flow field is ui (i = 1,2 ,3) ,  the pressure p, the density p and kinematic viscosity 
v. denotes an as yet unspecified body force per unit mass. Cartesian space 
coordinates are xi (i = 1,2 ,3)  and t denotes time. 

Solutions are sought in which the velocity field may be decomposed into a ‘basic 
flow’ si and a ‘disturbance’ u;, as ui = si+uU;; but no assumptions regarding the 
relative sizes of 4?li and u; are implied. Since the basic flow itself satisfies the 
Navier-Stokes equations, 

( 2 . 2 4  

(2.2b) 

where pcO) and Elo) respectively denote the ‘basic ’ pressure and body force. 

the space coordinates, as 
It is necessary to restrict attention to basic flows for which si depends linearly on 

si = ai5(t)x,+%2O)(t) ( i , j  = l , 2 , 3 ) .  (2.3) 

Similarly, the basic body force and pressure are here taken in the form 

IFp =fp X j + + j 0 ) ( t ) ,  ( 2 . 4 ~ )  

(2.46) 
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It follows that the various quantities are related by 

(2.5b) 

a*j = 0. ( 2 . 5 ~ )  

The second of these relations may be re-expressed in matrix form as 

where S has zero trace by virtue of ( 2 . 5 ~ )  and M(t) may be regarded as an arbitrary 
symmetric matrix. This differs from equation (-2.4) of I only by the addition of the 
term in F. 

It may be noticed at once that, if lFio) is conservative, F must be symmetric and so 
may be absorbed into the arbitrary M(t). It follows that, with symmetric F, the 
same class of admissible velocity fields arises as in I. In particular, those independent 
of time have matrix S reducible to one of the forms 

{aij} = s = (" 0 lor (: ! :) (2.7a,b) 
0 - h  ,--E 0 0 -a-b 

when described relative to suitably chosen principal axes: cf. I $3. 
Time-dependent basic states are discussed later, in $4: unsteadiness is the 

inevitable consequence whenever vortex lines are stretched by the irrotational part 
of the flow, In fact, any one of this general class of divergence-free basic flows with 
uniform rates of strain admits solution of the evolution equations for planar 
disturbances ; but the steady basic flows hold most physical interest. Though 
artificial in the sense that they are unbounded in space and attain unbounded 
velocity a t  infinity, they may be regarded as valid local approximations to flows near 
stagnation points. Streamlines are open for (2.7b) and for (2.7a) with h2 < s2; closed 
for ( 2 . 7 ~ )  with h2 > E ~ .  

We now focus attention on a class of flows for which F is not symmetric : namely, 
those subject to a Coriolis force when viewed in a reference frame rotating with 
constant angular velocity-f2 = -(52,, 52,,SZ,) relative to some inertial frame. For 
these. 

where ciik is the permutation tensor. Accordingly, 

F = ui:)] = { 2 ~ { ~ ,  a,,}, 9:') = 2s { j k  'j @Lo' (2.9) 

(2.10a) 
d S  
dt 

and (2.5a, b) give 
-+ (S- G)S = M, 

(2.10b) 



For steady basic 
after some algebra, 

flows, (S- G)S must be symmetric. This requirement reduces, 
to 

(2.11) 

with S taken in the general form 
a e  

d -C - ( a + b )  
(2.12) 

appropriate for axes chosen along the principal directions of rate-of-strain. 
For (2.11) to have a solution, i t  is necessary that either the determinant of S 

(2.13) 
should vanish or that 

In the latter case, the net basic vorticity in the non-rotating inertial frame is 
identically zero and the basic velocity field in this frame is a pure rate of strain a t  
each instant. However, if the strain rates u, b and - (a  f 6 )  are constants in the 
rotating frame (as will be assumed subsequently) the principal axes of rate-of-strain 
rotate with angular velocity - i 2  relative to the inertial frame. 

If, on the other hand, the determination of S is zero, then the strain rate a may be 
found in terms of b, c ,  d ,  e as the solutions of the quadratic equation 

(Q,, a,, Q,) = - ( c ,  d ,  4. 

a2b+a(e2+b2-cC2)+b(e2 -d2)  = 0. (2.14) 

Since the roots u must be real, it is necessary that 

( e 2 + b 2 - c 2 ) 2  > 4b2(e2 -d2)  

ifdet S is to be zero. In turn, (2.11) yields two independent linear equations 
connecting the three Q,: accordingly, l Q l  may be arbitrarily prescribed and the 
three associated components determined by these relations. 

If one of the principal strain rates, say a, is taken to be zero, then S has the 
form 

(where b is now replaced by e )  and its determinant vanishes provided 

e(d2-e2)  = 0. (2.15) 

If 6 = 0, the motion is a pure rotation and (2.11) yields 

( 0 1 ,  Q,, Q,) = K ( c ,  d ,  e l ,  (2.16) 

where K is an arbitrary constant. Alternatively, if (2.15) is satisfied because d = f e ,  
then 

(2.17) 
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for arbitrary K .  Corresponding relations for three non-zero strain rates are omitted 
for brevity. 

For the above classes of admissible basic flows, the evolution of planar disturbances 
is exactly governed by linear equations, much as in I. The disturbance velocity u; and 
pressure p( l )  have the form 

(2.18) 

with time-dependent wavenumber a(t) = {at ( t ) } .  The formulation differs from I only 
by inclusion of Coriolis terms. In  particular, the disturbance Coriolis force is 

~ ( O X U ' )  = Re{2eUkQ2522kexp[iazx,+iS]>. (2.19) 

Just  as in I, it is necessary to choose 

dd 
-+aj4Yj!" = 0, 
dt 

da da 
-$+ak(Tkj = 0, i.e. -+STa = 0, 

dt 

(2.20 a )  

(2.20 b) 

where ST is the transpose of S. This leaves the momentum and continuity equations 
in the form 

iajj 
(2.21 a )  

dli 
-+SSli+v(a.a)r i=--+2(51xi i ) ,  
dt P 

r i -a  = 0. (2.21 b )  
Elimination of I;  yields 

iaT ( 2 s  - G)G 
# l P =  a , a  9 

( 2 . 2 2 ~ )  

the latter of which is just  
dli 
dt 
-+ Tii = 0, T G {7ij}, (2.23) 

Here 7 is a time-dependent matrix which is a known function of the elements uij of 
a permissible S and of the time-varying wavenumber a governed by (2.20b). The 
wavenumber equation is identical to that of I and the structure of (2.23) is similar 
but contains additional terms in the Qi. Analytical solutions may be found for special 
cases but computation is more often necessary from this point. 

3. Two-dimensional elliptical basic flows 

with matrices S of the form 
We here restrict attention to the family of admissible two-dimensional basic flows 

0 

(3.1) 
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as seen relative to a frame rotating with angular velocity 

-a = -(Q,, 0, O ) ,  (a, = Q3 = 0). (3.2) 

The corresponding class of flows with SZ = 0 has been examined in earlier papers. 
When c2 < 2, the streamlines are hyperbolic and the wavenumber varies expo- 
nentially with time : see Lagnado et al. (1984) and I. The continuous stretching and 
tilting by the basic flow then often causes the disturbance to  amplify, but the 
consequent shortening of the disturbance wavelength ensures that viscous dissipation 
ultimately predominates (except for isolated special cases in which the wavelength 
continuously increases with time). When c2 = 2, the basic flow is a parallel plane 
Couette flow and the wavenumber depends algebraically on t : this was examined by 
Kelvin (1887). When c2 > e2, the basic flow has elliptical streamlines and the 
disturbance wavenumber varies periodically with t. This was examined in I and more 
comprehensively by Bayly (1986) and Landman & Saffman (1987). Bayly was first 
to realize that, though the wavenumber is periodic, the disturbance amplitude is not 
necessarily so. For a range of wavenumbers, the disturbance undergoes a Floquet- 
type instability due to  the periodic forcing. Bayly's inviscid analysis of this 
instability was extended by Landman & Saffman to  include the damping influence 
of viscosity. 

As also described in equation (3.14) of I, the viscous terms may be removed by the 
transformation 

Gi(t) = exp { - v [ (a - a) dt} 4,(t) (3.3) 

and the resultant variables Gi(t) satisfy the corresponding inviscid equations 

dii 
dt -+ 7&u' = 0, qn = {+ij} 

where the elements iij are as given for 7tj in (2.23) but with viscosity v set equal to 
zero. Just as in I, the first column of q,, is identically zero: it follows that 

- e+ ra2 - c- 2Q1 + saz 

8 +sag 

and G1 is most easily recovered from the continuity equation (2.21 b),  

u , 4 , + u 2 4 2 + a , ~ ,  = 0. (3.5) 

The wavenumber a(t) satisfying (2.20b) with S as in (3.1) is given in I ;  namely 

(3.6) 

A = cospt- ( E / P )  sin,& 
, B =  cos,4t+(e/P)sinpt, 

C = - (c//3) sinpt, 

p = (C2-€2)$, (c2 > €2), 

where a, = (a,,, a2,, a,,) denotes the wavenumber at t = 0. The time-dependent 
matrix Q(t) in (3.4) is therefore known explicitly. 

The inviscid stability problem is governed by (3.4) and may be solved by Floquet 
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theory as described by Bayly (1986). The present work extends Bayly’s problem to 
incorporate rotation of the coordinate frame in which the elliptical flow appears as 
steady. The solution is some linear combination of two Floquet modes of the form 

(G2, ti3) = eUt (w2, w3), w, (t+27~/3-’) = wj(t) ( j  = 1,2), (3.7) 

where the wi have period r = 2n/P that matches that of the wavenumber. The g 
denote two Floquet exponents as yet unknown. The associated Floquet matrix 
moblem is 

(3.8) 

and this must be solved numerically to  find the 2 x 2 matrix N a t  time r = 2~//3. This 
yields its two eigenvalues, the Floquet multipliers pj, which in turn give the two 
Floquet exponents as 

It may be shown that the determinant of N(r) must equal unity. This property 
provides a ready check on the accuracy of the numerical procedure used to calculate 
N(r) and hence the pj. Because the determinant of N(r) is unity, the product p1p2 of 
its two eigenvalues is also unity. Since N is a real matrix, this means that ( p l , p 2 )  
are either real and positive, of the form (p, l /p) or are complex conjugates of form 
exp ( fiq5) with unit modulus (see Bayly 1986). 

(r = c71,2 = (/3/27C) logpi (i = 1,Z) .  (3.9) 

As the two eigenvalues of N(7) are the roots pj of 

p2-,u(trN)+detN = 0 

and as det N(r) = 1, i t  follows that 

(3.10) 

where the trace of N is evaluated a t  t = 7. Instability requires > 0 and this occurs, 
for the greater real root pj ,  whenever the trace of N(7) is greater than 2. 

Since a3 passes through zero once during each period r ,  there is no loss of generality 
in choosing the initial instant t = 0 as that for which a3 = 0 and a2 2 0. (However, 
note that this initialization differs from the one chosen by Bayly.) This allows 
simplification of (3.6) to 

al(t) =a,,, a2(t) = (cos/3t-~/?-l sin/3t)a2,, a J t )  = (-c/F’ sin/3t)o12,. (3.11) 

Also, since the inviscid problem has no natural length or time scales, these may be 
chosen arbitrarily : convenient choices are those that give 

c = 1, la(O)( = 1. 
Accordingly, we set 

(3.12) 

without loss. The basic flows are then parametrized by E .  This is a measure of the 
eccentricity of the elliptical streamlines and is related to  Bayly’s parameter E by 

I c = l ,  / 3= (1 -e2$  ( O < e < l ) ,  

a3, = 0, az0 = (1  -a;,$ (0 < a,, Q 1) 
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where E is the ratio of the principal axes of the ellipses. Thus, E = 0 is a pure rotation 
and the eccentricity increases indefinitely as E approaches 1 ; for instance, the ratio 
of major to minor axes of streamlines is 3 when E = 0.8. The background rotation is 
parametrized by 52, (now with timescale such that c = 1) and the initial disturbance 
wavenumber by a,,. With these modifications, the Bloquet matrix Q is somewhat 
simplified. 

Numerical integration of (3.8), to find N(27c/P), was carried out on a BBC 
microcomputer using a general-purpose differential equations package developed by 
Mr I. Ellery. Accuracy could easily be assessed by evaluating the determinant of 
N(2xIP): in almost every case examined, this determinant was very close to the 
known correct value of unity and was within the stated accuracy of the package. In 
just  a few limiting cases of no particular importance, the matrix N(27clP) was ill- 
conditioned and errors became significant. All such cases arose when a,, was close to 
(but less than) unity and the eccentricity was large: fortunately, the case a,, = 1 has 
an analytic solution and these doubtful numerical results could be discarded. 
Accordingly, the overall accuracy of the results obtained was considered satisfactory. 

The case a,(O) = 1 ,  a,(O) = 0 simply has a = (1, 0,O) at  all times. Then, r = s = 0 
and Q ( t )  reduces to the constant matrix 

(1 +252, - €  -l-.*) E 

(with c taken as unity). The solutions for N(t) are then exponential, in exp (at), where 
a corresponds to the Floquet exponents defined in (3.9). It is readily found that, for 
this case, 

v,, = * [ E Z  - (1 + 252,)2]4. (3.13) 

Clearly, one mode is unstable whenever - E  < 1 + 252, < E .  For example, with E = 0.8, 
such modes are unstable whenever -0.9 < 52, < -0.1; but small values of e confine 
the instability to a narrow band centred on 52, = -0.5. This simple result provided 
a further useful check on the computations. 

A sample of the numerical results is shown in figures l(a-f). These show the 
unstable Floquet exponent (c > 0) for various constant strain rates e and background 
angular velocities 52, . The horizontal axis shows the normalized initial wavenumber 
component a,, and the vertical axis shows a. It is clear that increasing the 
eccentricity of the streamlines increases the band of unstable wavenumbers a,,, and 
that the rotation 52, has a strong effect. Results for 52, = 0 are in good agreement 
with those of Bayly (1986), when account is taken of the different initializations. 
Notice, in particular, that there is a range of values of 52,, for which the most 
unstable mode has a,, = 1: that is, the case solved exactly above. It is also 
noteworthy that the instability a t  negative values of 52, is typically much weaker 
than for positive 52,; that it is confined to  a narrower range of wavenumbers; and 
that it is absent altogether a t  some values of 52,. 

By tediously determining many such curves for various fixed e and a,, the values 
of a,,, at which u first becomes real and positive may be mapped out. This gives a 
stability boundary in three-dimensional (a,,, E ,  52,)-space. The section of this surface 
for E = 0.8 is shown in figure 2. 

At smaller values of E the larger of the unstable regions is narrower. For instance, 
that  for E = 0.6 (not shown) lies within the corresponding region shown for E = 0.8: 
its unstable band of rotation speeds is confined to  - 1.6 < 52, < -0.4 in the limiting 
case a,, = 1. Correspondingly, when E = 0.6, the smaller unstable region extends 
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somewhat less far to  the right, includes a narrower band of wavenumbers and has 
lower maximum growth rates a t  each fixed a,, than for e = 0.8. Unexpectedly, the 
smaller unstable region for e = 0.6 does not lie totally within that for e = 0.8, but lies 
slightly above it. For example, a t  9, = - 2 ,  the unstable band of wavenumbers 
is approximately 0.425 < a10 < 0.465 for e = 0.6 while that for E = 0.8 is about 
0.34 < al0 < 0.425; similarly, at a, = - 1.7, the corresponding unstable bands are 
close to (0.58, 0.63) and (0.485, 0.565) respectively. 

It is particularly noteworthy that there is instability, for some wavenumbers at 
each E ,  for all but a rather narrow range of rotation speeds 51,. For E = 0.8 the stable 
range is - 1.3 < Q, < -0.9 approximately and this range widens as e is reduced, 
tending to - 1.5 < 51, < -0.5 as E approaches zero. Naturally, the maximum growth 
rate of unstable modes also shrinks to zero as the state of pure rotation is 
approached. At the other extreme, the eccentricity increases without limit as e 
approaches 1 from below and the true limiting case is unbounded plane Couette flow 
in a rotating frame. The stability of this flow has been studied by Farrell (1982), 
Criminale (1985) and others. 

Figure 3 shows some typical results for the temporal evolution of disturbances. 
Cases (a) and ( 6 )  exhibit doubly periodic behaviour of stable inviscid modes with pure 
imaginary Floquet exponents CT,, : these would eventually be damped by viscosity. 
Case ( c )  shows inviscid instability with real CT, > 0. 

A physical understanding of the instability mechanism may be gained by first 
considering the case of small eccentricity. The streamlines of the basic flow are then 
virtually circular and this near solid-body rotation can support inertial waves with 
frequencies 

w = +2(Q' .a )  

relative to the rotating fluid. Here, $2' includes both the background rotation-f2 
and the contribution of the constant vorticity ( -2c,  0,O) with c = 1 : accordingly, 
sh' = - (a, + 1 ,0 ,0 ) .  As originally pointed out by Bayly (1986) for  the case 52, = 0, 
these inertial waves are in fact subject to periodic extension and contraction by the 
shearing component of the basic flow. For most wavenumbers this simply produces 
an additional periodic modulation; but others can be driven unstable when the 
forcing frequency (as observed by fluid particles) is close to that of the inertial-wave 
frequency. 

Now, the former forcing frequency is the same as that of the periodically varying 
wavenumber vector : i.e. c = 1 for e = 0 or p for E =I= 0. Accordingly, instability can be 
expected to occur close to those wavenumbers with 

+2(IR,+l)a,, = ( 1 4 ) ;  = p ;  (3 .14)  

these lie on both branches of a hyperbola, for each fixed e. As figure 2 shows, this is 
indeed so. To aid comparison, points labelled with plus signs and circles are inserted 
in the figure. Those marked by a plus sign lie on the hyperbola (a, + 1)  al0 = k0.5 
corresponding to e = 0 and denote pure (neutrally stable) inertial waves; while those 
marked by a circle are on the hyperbola (a,+ l)alo = k0.3 corresponding to 
elliptical flow with e = 0.8. The downwards shifting of the regions of instability, more 
marked for the narrower region, as e increases is obviously associated with the 
decrease in frequency p as e increases. A more detailed physical picture of the 
mechanism can be constructed in terms of the periodic extension and contraction of 
vortex lines associated with the propagating plane-wave disturbance. 

10 F1.M 198 
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FIQURE 1 (a-c). For caption see facing page. 

The modification by viscosity of these inviscid results is effected by the 
transformation (3.3). Substitution from (3.1 1) and integration over the rotation 
period r = 2x lp  readily yields the mean viscous decay rate to be 

(3.15) 
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FIGURE 1. The inviscid Floquet growth rate versus initial wavenumber component alO, for 
various constant strain rates E and angular velocities 51,. (a-e) show results for E = 0.2, 0.6, 0.8 at 
52, = 0, 0.2, 1.0, -0.5, -0.75 respectively. (f) shows results for E = 0.8 at a, = - 1.5, - 1.7, 
-2.0. 
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4 a l o [  0.2 \ 
I i 

8 

- 3  -2 - 1  0 1 2 

9, 

FIQIJRE 2. Inviscid instability boundaries for E = 0.8 in the (Q,, a,,)-plane. Two distinct unstable 
bands exist: that on the right exhibits largest growth rates. A narrow range of a, near - 1 is 
completely stable. Points marked + lie on the hyperbola (Q, + l)ale = kO.5 and those marked 0 
lie on (Q, + l)a,,, = f0.3 (see text). 

which must be added to the Floquet exponent u in (3.7) to find the corresponding 
viscous result. However, because of the normalizations of c and of the lengthscale of 
the disturbances, which are equivalent to defining new units of length and time, the 
so-scaled value of v used in (3.15) is actually vla(0)12/c in unscaled units. Though this 
result appears, at first sight, to differ from that of Landman & Saffman (1987) for the 
case a, = 0, this difference is solely attributable to the different normalizations and 
initializations used. 

It is clear that short-wave disturbances are always strongly damped by viscous 
action but that the inviscid instability must persist for sufficiently long waves. As the 
inviscid growth rat& of the narrower instability band are typically much less that 
for the wider one, viscous damping will suppress the narrower band a t  wavelengths 
that are still unstable in the wider. This result is of particular relevance when one 
considers possible extension of the theory to deal with elliptic vortices of finite 
extent, or to those with constant vorticity only in a finite central core. Such 
extension will be far from straightforward, and it is perhaps premature (pace 
Landman & Saffman’s $4) to attempt comparison between the present theory and 
experiments that show evidence of three-dimensional distortion and breakup of finite 
vortex structures. 

Nevertheless, some corroboration is provided by the numerical computations of 
Pierrehumbert (1986) for inviscid disturbed elliptical flows with SZ, = 0;  also, in the 
remoter context of unstable shear flow, by computational results of Metcalfe et al. 
(1987). The present growth industry of direct numerical simulation of complex flows 
is providing much data that requires physical interpretation. For instance, repre- 
sentations of two-dimensional ‘turbulence ’ (McWilliams 1984 ; Babiano et al. 1987) 
show the development and persistence of strong coherent circular vortices ; but 
elliptical vortices rarely last for long. However, it  is risky to ascribe diverse 
phenomena to a common cause. The stability or instability of wall-influenced flows, 
such as the thin ‘cats’ eyes’ of finite Tollmien-Schlichting waves, is probably better 
explained in terms of weakly nonlinear mode interactions than by vague analogy 
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Y l F  

30 
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-10- 

t 

-40 L 
FIQURE 3. Typical results showing temporal evolution of inviscid disturbances. Y denotes 
disturbance amplitude and t is dimensionless time. Results shown are for R, = 0 and 6 = 0.6 at 
three different wavenumbers. a*, = 0.8,0.72 and 0.6. (a)  and ( b )  show doubly-periodic behaviour 
associated with imaginary Floquet exponents and (c) shows instability when the exponents are 
real. 
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with unbounded elliptical vortices ; and the breakup of finite vortices may often have 
more to do with instabilities a t  the outer boundary than with the ‘internal’ 
instability mechanism discussed here. 

Of relevance to the latter is work of Love (1893), who considered irrotational 
disturbances of finite elliptical vortex cores within otherwise irrotational flow : he 
found instability of such disturbances for eccentricities greater than 24213 .  More 
recent attempts to determine the stability of elliptical flows are described by 
Cushman-Roisin (1986), Ripa (1985, 1987), Caprino & Salusti (1986) and Vladimirov 
& Tarasov (1985)) but connections with the present work are unclear. For example, 
Ripa’s eddies are of finite extent and subject to  Coriolis force, his analysis is based 
on a shallow-water approximation and his unstable disturbances are assumed to 
have polynomial form in the horizontal coordinates. 

In  the light of our results, i t  is tempting to speculate that there may well be 
circumstances in which finite vortex structures are completely stabilized by 
sufficiently large rotation speeds in the opposite sense (because of the absolutely 
stable zone or because viscosity damps the narrower instability band at all realistic 
wavenumbers) whereas small negative rotation speeds may have the opposite effect 
(by allowing larger inviscid growth rates, as in figure 1 ) .  In  geophysical situations, 
long-lasting elliptical eddies are certainly uncommon : a review of known cases 
(including Jupiter’s red spot, of course) would be instructive. 

The Floquet growth of plane waves described here is precisely the intensification 
of disturbance vorticity through stretching and tilting by the basic elliptical flow. In 
particular, i t  does not signal the breakup of an unbounded vortex (though this would 
certainly appear to be so in a numerical simulation) ; rather, i t  is a superposition of 
another growing flow upon i t ,  since the disturbance, however strong it may become, 
has no influence on the basic flow. Also, although the unstable monochromatic waves 
are solutions of the full nonlinear equations, i t  should not be concluded that large- 
amplitude wavy flows represent the natural ‘end state ’ of unstable elliptical eddies. 
As Haynes (1987) has shown in the simpler context of unidirectional shear flow on 
a beta plane, such plane-periodic disturbances may themselves be unstable (since the 
Rayleigh criterion for barotropic instability is satisfied locally). His numerical studies 
reveal that the planar disturbances do indeed break down into small-scale eddy 
structures of size equal to the wavelength of the planar flow. This of course suggests 
an effective mechanism for the creation of small-scale eddies (and so increased 
dissipation) in turbulent flows. Indeed, if the newly formed small eddies were 
themselves elliptical, the process would repeat itself down to still smaller scales. But 
there are many routes by which small-scale motions may be generated and i t  would 
be rash to fix on just this one. 

4. Other basic states 
We now return to the initial formulation of $ 2  to outline how similar solutions may 

be obtained for other basic states. These may be time-dependent and may be subject 
to other body forces. 

We first note from (2.6) that  when body forces are absent, time-dependent basic 
states satisfy 

d S  
dt -+S2 = M(t) (symmetric); t r S  = 0. (4.1) 
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If axes are chosen along principal rates of strain and if these strain rates are constant, 
the matrix S then takes the general form 

a -w3  w2 

- w 2  w1 -a-b 
S = (  w3 b -q), 

where the wi denoting the three components of basic vorticity satisfy 

wl( t )  = wl(0)eat, 02(t)  = w2(0)ebt, w3(t) = w3(0)e-(a+b)t ( 4 . 3 ~ )  

Correspondingly, variable strain rates a(t), b(t) yield 

wl(t) = w,(O) exp a(t’) dt’ etc. l (4.3b) 

Clearly, the temporal evolution of the q ( t )  is due to vortex stretching and 
contraction by the spatially uniform strain rates. The wavenumber a(t) of planar 
disturbances is still given by (2.20) but i t  is no longer periodic. Solution for a(t) with 
given a(0) then allows solution of the disturbance equations (2.21) (with a here equal 
to zero). Large-time solutions are likely to exhibit viscous decay because of ever- 
decreasing disturbance lengthscales ; but periods of initial growth due to inviscid 
processes are sure to occur. 

I n  general, the orientation of the principal axes of rate-of-strain need not remain 
fixed in an inertial reference frame. However, when these directions are variable, it 
is always possible to choose a rotating reference frame aligned along them. If the 
rotation rate of this frame is - D(t), then corresponding centrifugal and Coriolis forces 
must be introduced into the formulation. It is then necessary to seek time-dependent 
solutions of an equation similar to (2.10) with imposed strain rates a@), b( t )  and 
rotation Q(t )  : note that an additional body-force term arising from (dnldt)  x x 
will be present. This may be done by decomposing (2.10) into symmetric and 
antisymmetric parts, but details are not given here. Once the evolution of the basic 
flow has been determined, the linear disturbance equations analogous to (2.20) and 
(2.21) may be solved sequentially as before. 

It seems likely that this method of solution will prove useful to examine the local 
evolution and small-scale instability of strained eddy structures in turbulence : cf. the 
small-scale instabilities found in the numerical simulations of Pierrehumbert (1986) 
and Metcalfe et aZ. (1987). I n  particular, there is considerable scope for merging the 
present analytical techniques with direct numerical simulations of such flows, by 
appropriate coordinate transformations. B. J. Bayly (private communication, 1988) 
has recently considered how his Floquet stability analysis may yield a local 
approximation for disturbance growth in more general flows. 

We conclude with a brief account of other body forces for which similar exact 
solutions may be found. 

4.1. The beta-plane approximation 
I n  geophysical contexts, the variation with latitude of the Coriolis force may be 
important. The simplest approximation that incorporates this variation is the beta- 
plane model in which the rotation velocity 52 is taken as a linear function of 
position, 

n = no+ RX, R = {Tij}. 
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With basic velocity fields in the form (2.3), the resultant Coriolis force contains terms 
quadratic in the space coordinates. These may be incorporated into the pressure p(O) 
by addition of cubic terms in the xi only if they are expressible in gradient form. This 
is so only for a restricted class of flows and is most clearly exemplified by considering 
the case 0 = (0, 0, a$o) +pxl). It may be verified that the permissible class of linearly 
varying basic flow then are those with matrix S of the form 

S =  g -2a 0 .  G a') 
(4.4) 

But equation (2.10) must also be satisfied : this requires that steady flows of the form 
(4.4) must have h = f =  0 and g = -Or). Such flows are combinations of an 
axisymmetric stagnation-point flow with axis of symmetry in the y-direction and an 
x-dependent plane Couette flow in the y-direction. The case of plane Couette flow 
alone has previously been studied by Boyd (1983). 

Similar restrictions on the admissible basic flows were found by Craik (1988) when 
considering variable magnetohydrodynamic forces. Plane disturbances of such flows 
still satisfy (2.20), but the additional variable component of D or magnetic field 
imposes a new restriction on the form of permissible disturbances: details need not 
be given here as they are similar to the magnetohydrodynamic case just mentioned. 

4.2. Buoyancy forces with density stratiJication 

In the simplest Boussinesq form, buoyancy due to density variations provides the 
body force per unit mass 

where R denotes the vertical unit vector and g denotes gravitational acceleration. 
Here, p is the variable density and p1 a fixed reference density. The density may vary 
according to 

= 4 ( P / P l ) ,  (4.5) 

where K is a diffusion coefficient due to molecular or thermal effects. More generally, 
the density may be attributable to several different causes di): temperature, and 
various dissolved salts each with their own characteristic diffusion rates K ( ~ ) .  In such 
cases, one may take 

where the a(i) are known constants and the c(j) denote temperature or concentration 
of salts. Again, an exact description of several classes of basic state and disturbance 
may be given for such configurations. When basic states described by the velocity 
field 4?l and density p or concentrations di) vary linearly in the space coordinates 
xi, the Laplacians associated with diffusive processes are identically zero. Thus, basic 
states satisfy 

Ddf) 
Dt 

- - V p - p g k ,  -- P 1 T  - 
D4?l 

- 0, (4.7) 

where now D/Dt = a/at  +4?l - V .  
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On writing the basic states as 

%'$ = gij  x, + %jo)(t), c( j )  = Cy) xk + %f) (gf)  constants), 

(cf. (2.3)), one finds that 

p1 -+S2 - @  = -M(t) (symmetric), (Y ) 

(4.8a) 

(4 .8b)  

(4.8~) 

It is clear that each 'concentration vector' C") evolves in just the same way as does 
the wavenumber a(t) in (2.20). This is a consequence of the kinematic property that 
material planes remain plane throughout. 

Admissible basic states satisfying (4.8) may be found and the corresponding 
evolution equations for planar disturbances constructed as in the preceding sections: 
details need not be given here. It suffices to observe that solutions may be found 
as above for many flows subject to buoyancy. For example, plane propagating 
internal gravity waves strained by basic flow fields may be studied. So too may be 
plane-periodic motions arising from buoyancy-driven instability associated with 
thermal and double (or multiple) diffusion, and subject also to straining by an 
ambient velocity distribution. The simplest basic states are those with purely 
horizontal velocity fields and uniform vertical stratification of concentrations (i.e. 
Cy) = C y  = 0). It seems certain that plane internal gravity waves will exhibit a 
Floquet instability when strained by elliptical eddies, in the same manner as do the 
inertial waves studied in 9 3 above and the magnetohydrodynamic waves discussed 
by Craik (1988). However, detailed investigation of such situations is postponed until 
later. 

I am grateful to Professor W. 0. Criminale for correspondence about this work, 
which grew from our earlier collaboration; also to Dr A. W. Hood for initial 
assistance with the computations. 
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